Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2249413

ABSTRACT

Myeloperoxidase is an enzyme released by neutrophils when neutrophil extracellular traps (NETs) are formed. Besides myeloperoxidase activity against pathogens, it was also linked to many diseases, including inflammatory and fibrotic ones. Endometrosis is a fibrotic disease of the mare endometrium, with a large impact on their fertility, where myeloperoxidase was shown to induce fibrosis. Noscapine is an alkaloid with a low toxicity, that has been studied as an anti-cancer drug, and more recently as an anti-fibrotic molecule. This work aims to evaluate noscapine inhibition of collagen type 1 (COL1) induced by myeloperoxidase in equine endometrial explants from follicular and mid-luteal phases, at 24 and 48 h of treatment. The transcription of collagen type 1 alpha 2 chain (COL1A2), and COL1 protein relative abundance were evaluated by qPCR and Western blot, respectively. The treatment with myeloperoxidase increased COL1A2 mRNA transcription and COL1 protein, whereas noscapine was able to reduce this effect with respect to COL1A2 mRNA transcription, in a time/estrous cycle phase-dependent manner (in explants from the follicular phase, at 24 h of treatment). Our study indicates that noscapine is a promising drug to be considered as an anti-fibrotic molecule to prevent endometrosis development, making noscapine a strong candidate to be applied in future endometrosis therapies.


Subject(s)
Fibrosis , Noscapine , Peroxidase , Animals , Female , Collagen/metabolism , Endometrium/drug effects , Endometrium/metabolism , Fibrosis/drug therapy , Fibrosis/metabolism , Fibrosis/veterinary , Horses/metabolism , Noscapine/pharmacology , Noscapine/therapeutic use , Peroxidase/antagonists & inhibitors , Peroxidase/metabolism , RNA, Messenger/metabolism
3.
Nat Cell Biol ; 23(12): 1314-1328, 2021 12.
Article in English | MEDLINE | ID: covidwho-1559292

ABSTRACT

The lung is the primary organ targeted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making respiratory failure a leading coronavirus disease 2019 (COVID-19)-related mortality. However, our cellular and molecular understanding of how SARS-CoV-2 infection drives lung pathology is limited. Here we constructed multi-omics and single-nucleus transcriptomic atlases of the lungs of patients with COVID-19, which integrate histological, transcriptomic and proteomic analyses. Our work reveals the molecular basis of pathological hallmarks associated with SARS-CoV-2 infection in different lung and infiltrating immune cell populations. We report molecular fingerprints of hyperinflammation, alveolar epithelial cell exhaustion, vascular changes and fibrosis, and identify parenchymal lung senescence as a molecular state of COVID-19 pathology. Moreover, our data suggest that FOXO3A suppression is a potential mechanism underlying the fibroblast-to-myofibroblast transition associated with COVID-19 pulmonary fibrosis. Our work depicts a comprehensive cellular and molecular atlas of the lungs of patients with COVID-19 and provides insights into SARS-CoV-2-related pulmonary injury, facilitating the identification of biomarkers and development of symptomatic treatments.


Subject(s)
COVID-19/genetics , Lung/metabolism , Transcriptome/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , COVID-19/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Fibrosis/virology , Humans , Lung/pathology , Lung/virology , Proteomics/methods , SARS-CoV-2/pathogenicity
4.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1542585

ABSTRACT

Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1-7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1-7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.


Subject(s)
Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Fibrosis/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Mas/metabolism , Cannabis , Cigarette Smoking , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Inflammation , Lung/pathology , Pandemics , Respiration, Artificial , Respiratory Distress Syndrome , Respiratory Insufficiency/metabolism , Risk Factors , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Cells ; 10(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470800

ABSTRACT

Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.


Subject(s)
COVID-19/immunology , Epithelium/immunology , Idiopathic Pulmonary Fibrosis/immunology , Lung/immunology , Alarmins , Animals , Cellular Senescence , Coculture Techniques , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Immunity , Inflammation/metabolism , Ligands , Necroptosis , Necrosis/pathology , Pulmonary Disease, Chronic Obstructive , SARS-CoV-2 , Signal Transduction
6.
Chembiochem ; 22(15): 2516-2520, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1400765

ABSTRACT

The outbreak of SARS-CoV-2 has been an extraordinary event that constituted a global health emergency. As the novel coronavirus is continuing to spread over the world, the need for therapeutic agents to control this pandemic is increasing. αV ß6 Integrin may be an intriguing target not only for the inhibition of SARS-CoV-2 entry, but also for the diagnosis/treatment of COVID-19 related fibrosis, an emerging type of fibrotic disease which will probably affect a significant part of the recovered patients. In this short article, the possible role of this integrin for fighting COVID-19 is discussed on the basis of recently published evidence, showing how its underestimated involvement may be interesting for the development of novel pharmacological tools.


Subject(s)
COVID-19/virology , Fibrosis/virology , Integrin beta Chains/metabolism , SARS-CoV-2/isolation & purification , COVID-19/metabolism , COVID-19/pathology , Fibrosis/metabolism , Fibrosis/pathology , Humans
7.
Sci Rep ; 11(1): 11234, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1246399

ABSTRACT

Understanding the molecular basis of fibrosis, the lethal complication of COVID-19, is urgent. By the analysis of RNA-sequencing data of SARS-CoV-2-infected cells combined with data mining we identified genes involved in COVID-19 progression. To characterize their implication in the fibrosis development we established a correlation matrix based on the transcriptomic data of patients with idiopathic pulmonary fibrosis. With this method, we have identified a cluster of genes responsible for SARS-CoV-2-fibrosis including its entry receptor ACE2 and epidermal growth factor EGF. Then, we developed Vi-Fi scoring-a novel drug repurposing approach and simultaneously quantified antiviral and antifibrotic activities of the drugs based on their transcriptomic signatures. We revealed the strong dual antifibrotic and antiviral activity of EGFR/ErbB inhibitors. Before the in vitro validation, we have clustered 277 cell lines and revealed distinct COVID-19 transcriptomic signatures of the cells with similar phenotypes that defines their suitability for COVID-19 research. By ERK activity monitoring in living lung cells, we show that the drugs with predicted antifibrotic activity downregulate ERK in the host lung cells. Overall, our study provides novel insights on SARS-CoV-2 dependence on EGFR/ERK signaling and demonstrates the utility of EGFR/ErbB inhibitors for COVID-19 treatment.


Subject(s)
COVID-19/metabolism , Cytokines/metabolism , Fibrosis/metabolism , MAP Kinase Signaling System/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/complications , COVID-19/genetics , COVID-19/physiopathology , Cell Line, Tumor , Cytokines/genetics , Disease Progression , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Fibrosis/complications , Fibrosis/genetics , Fibrosis/virology , Gene Expression Profiling , Humans , Inflammation/genetics , Inflammation/metabolism , Multigene Family , RNA-Seq , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL